

Document 5D/1351-E 9 June 2022 English only

PLENARY

Region 3 Rapporteur

UPDATE ON ACTIVITIES IN REGION 3

1 Introduction

This Report introduces recent activities in Region 3 mainly related to IMT.

2 APT activities

2.1 APT Conference Preparatory Group (APG) for WRC-23

The 4th meeting of APG23 (APG23-4) is scheduled as a physical meeting in Thailand with remote participation in 15-20 August 2022. General information of APG activities is available in <u>http://www.aptsec.org/APTAPG</u> (meeting documents are only for APT members).

The APT preliminary views developed in APG23-3 in November 2021 are also available in <u>https://www.itu.int/en/ITU-R/conferences/wrc/2023/Pages/reg-prep.aspx</u>.

2.2 APT Wireless Group (AWG)

The 29th Meeting of the APT Wireless Group (AWG-29) was held as a e-meeting in 21-29 March 2022. General information of AWG activities is available in <u>http://www.aptsec.org/APTAWG</u> (meeting documents are only for APT members).

2.2.1 New organizational structure

The new organizational structure with new chairpersons has implemented to cover expanding study areas and improve work efficiency. WG IMT has newly established to accommodate increasing number of work items related to IMT. On the other hand, WG Harmonization also treats IMT spectrum matters which require harmonization efforts to other services.

The new structure and chairpersonship are shown on the table below.

- 2 -5D/1351-Е

Working Group on Harmonization (WG Harmonization) Mr. John Lewis, Added Value Applications, New Zealand	Working Group on IMT (WG IMT) Mr. Wang Hu, Huawei Technologies Co. Ltd., China	Working Group on Terrestrial (WG Terrestrial) Mr. Takahiko Yamazaki, Mitsubishi Electric Corporation, Japan	Working Group on Space, Aeronautical and Maritime (WG SAM) Mr. Bui Ha Long, Authority of Radio Frequency Management, Viet Nam
Sub Working Group on Spectrum Arrangement and Harmonization (Sub-WG SA&H) Ms. Lyu Boya, Huawei Technologies Co. Ltd., China	Sub Working Group on IMT Spectrum (Sub-WG IMT Spectrum) Dr. Michael Seongill Park, Qualcomm, Korea	Task Group on Fixed Wireless and Ground- Based Radar Systems (TG FWS/GBRS) Dr. Tetsuya Kawanishi, National Institute of Information and Communications Technology, Japan	Task Group on Satellite Systems (TG Satellite) Ms. Masmurni Binti Abdul Rahman, Measat Satellite Systems Sdn Bhd, Malaysia
Sub Working Group on Sharing Studies (Sub-WG SS)	Sub Working Group on IMT Technologies (Sub-WG IMT Tech)	Task Group on Intelligent Transportation Systems (TG ITS)	Task Group on Aeronautical and Maritime (TG A&M)
Mr. Alex Orange, Omnispace, Australia Mr. Yiran Jin, Samsung Electronics, Korea	Mr. Yasuhiro Kato, ARIB, Japan	Mr. Satoshi Oyama, ARIB, Japan	Dr. Xu Ying, State Radio Monitoring Center, China
Sub Working Group on Spectrum Monitoring (Sub-WG SM)	Task Group on Public Protection and Disaster Relief (TG PPDR)	Task Group on Wireless Power Transmission (TG WPT)	
Mr. Zheng Gaozhe ,State Radio Monitoring Center, China	Mr. Bharat Bhatia, ITU- APT Foundation, India	Dr. Chan Hyung Chung, Radio Promotion Association, Korea	
	Task Group on High Altitude Platform Station (TG HAPS) Dr. Lang Baozhen, China Academy of Information and Communications Technology, China	Task Group on Railway Radiocommunications (TG RR) Mr. Liu Bin, State Radio Monitoring Center, China	AFIS (APT Frequency Information System) adhoc Dr. Jaewoo Lim, National Radio Research Agency, Korea

2.2.2 Spectrum aspects

470-698 MHz (SWG-SA&H)

The meeting has worked to revise APT/AWG/Rep-79" Frequency Arrangements for IMT in the Band 470-698 MHz" for expanding its frequency arrangement defined as 3GPP band n71, also called the APT 600MHz. The meeting agreed to prioritize a new expanded arrangement, which is based on an extension to band n71, and sent a liaison statement to 3GPP RAN4 for asking to develop technical specification.

1 427-1 518 MHz (SWG-SA&H)

It was agreed to finalize this APT report with the title "Relevant information for considerations on the possible implementation of IMT in the frequency band 1 427-1 518 MHz", which was published as APT/AWG/Rep-113. The meeting aimed first developing APT Recommendation for its frequency arrangement, but the target and contents were modified mainly to capture relevant information, considering ITU-R has been conducting the sharing study between IMT and MSS.

1 980-2 010 MHz/ 2 170-2 200 MHz (SWG-SA&H)

The on-going study on coexistence study between terrestrial and satellite IMT system was progressed toward a new APT report. The draft report was carried forward to the next meeting for final review. This report contains survey summary about current status and future plan in APT members and related ITU-R studies on some technical and operational measures.

3 300-3 400 MHz and 4 800-4 900 MHz (SWG-IMT spectrum)

The meeting discussed how to develop frequency arrangement for APT member on both bands and decided to develop it as APT Report. All contributions were carried forward to the next meeting for further discussion.

2.2.3 Technology and general aspects

5G implementation in frequency bands above 24.25 GHz (SWG-IMT technologies)

This study is aiming to collect global trends of 5G implementation, on-going standardization activities and case studies above 24.25 GHz on each country. With many contributions so far, draft materials for this report are almost ready and reviewing process finally started. Some progresses were made but there are still many controversial parts remained for further review.

Development approaches and solutions for IMT-2020/5G use case (SWG-IMT technologies)

There were contributions for new study related to 5G use cases and deployment scenario. After cooperative discussion, proposed scopes were refined to focus deployment solutions for each use cases. The meeting agreed to start this new study and plans to complete it by AWG-32.

Public warning service status over IMT and other networks (TG-PPDR)

It was agreed to finalize this APT report, which was published as APT/AWG/Rep-115. This report captures survey results of alerting means over IMT network in APT members and summarizes 3GPP standardization progress on public warning services.

Emerging critical applications of IMT for industrial, societal and enterprise users (TG-PPDR)

The working document was updated and became stable while further work is still needed for some portions. It was agreed to extend the finalization of study to AWG-30. A reply liaison statement was sent to WP 5D to inform the progress of this work.

3 Activities in Region 3 countries

3.1 China

The 5G base stations construction has progressed steadily, and 5G subscribers have developed rapidly. By the end of March, the total number of base stations in China had reached 10.04 million. Among them, the total number of 5G base stations reached 1.559 million, accounting for 15.5% of the total base stations. By the end of March, the total number of mobile phone subscribers reached 1.66 billion, a net increase of 18.2 million over the end of the previous year. Among them, there were

403 million 5G subscribers, a net increase of 48.11 million over the end of the previous year, accounting for 24.3% of the total subscribers.

3.2 India

India held its first 5G spectrum auctions which was conducted over seven days and went through 40 rounds of bidding¹. It concluded on 1st August 2022. Key spectrum bands under auction for 5G were::

- 663-703/612-652 MHz (APT600 MHz band 3GPP Band #n105) (a)
- 703-748/758-803 MHz (APT 700 MHz Band 3GPP Band #28) (b)
- (b) 3300-3670 MHz
- (c) 24.25-27.5 GHz

Spectrum in other bands was also auctioned which included 850 MHz, 900 MHz, 1 800 MHz, 2 100 MHz, 2 300 MHz and 2 500 MHz.

A total of 71% spectrum got sold for US\$ 19 Billion for a license period of 20 years as follows -

2		Rjio												Bharti									VI									Adani									
Sno	LSA	600	700	800	900	1800	2100	2300	2500	3600	26000	600	700	800	900	1800	2100	2300	2500 36	00 26	6000	600	700	800	900	1800	2100	2300	2500	3600	26000	600	700	800	900	1800	2100	2300	2500	3600 2	6000
1	AP		10							100	1000								1	00 8	800					3.4			10	50	200										50
2	AS		10	5						100	1000				3.8				10	00 8	800																				
3	BH		10							100	1000						5		1	00 8	800									50											
4	DL		10							100	1000						5		1	00 8	800									50	200										
5	GU		10			10				100	1000						5		1	00 8	800									50	450										100
6	HA		10							100	1000						5		1	00 8	800									50	400										
7	HP		10							130	1000					5			1	00 8	800																				
8	JK		10	5						130	1000				5				1	00 8	800																				
9	KA		10							130	1000								1	30 8	800						5			50	200										50
10	KE		10							130	1000						5		1	00 8	800									50	800										
11	ко		10							100	1000					5			1	00 8	800									50	200										
12	MP	11	10			10				130	1000								1	00 8	800									50	400										
13	MA		10			10				100	1000					5			1	00 8	800									50	400										
14	MU	1	10							100	1000					4			1	00 8	800									50	200										100
15	NE		10	5						130	1000				4				1	00 8	800																				
16	OR	1	10			10				100	1000					5.2			1	00 8	800																				
17	PU		10							100	1000								1	00 8	800								10	50	300										
18	RA	1	10			10				130	1000								1	00 8	800									50	300										50
19	TN	1	10							100	1000								1	00 8	800									50	300										50
20	UPE		10			10				100	1000					0.8			1	00 8	800									50	250										and the second
21	UPW	1	10	5						130	1000								1	00 8	800									50	350										
22	WB		10							100	1000						5		1	00 8	800									50	400										

Values in MHz

Government also decided to reserve the following bands for Government owned mobile operator BSNL for rolling out 5G services:

- 663-673/612-622 MHz (10 MHz paired) (APT600 MHz band n105) (a)
- (b) 3630-3670 MHz (40 MHz)
- (c) 24.25-24.65 MHz (400 MHz)

Following these auctions the total spectrum holding of various Indian mobile operators is as below:

C:\PROGRAM FILES (X86)\PDF TOOLS AG\3-HEIGHTS(TM) DOCUMENT CONVERTER SERVICE\TEMP\94F27F2085A35B077C0F6F33FA2A9EF69D449596F77038E1EEF62C70687164FF.DOCX (30.09.22

¹ https://dot.gov.in/spectrum-management/2886

8	-	10		Rjio					8	Iharti				N N									Adani							Aircel					
Sno	LSA	600 700	800 90	0 1800 21	00 2300 25	00 3600 26000	600 7	00 800 9	900 1800	0 2100	2300 2500	3600 2600	0 600 7	700 800	900 1	800 21	100 230	0 2500	3600 260	100	600 700 800	900	1800 2100 2300 25	500 3600	26000	600 700 800 5	100 180	0 2100	2300 2500	3600 2600	0 600 70	00 800 9	00 1800	2100 2	300 2500 3600 26000
1	AP	10	10	10	40	100 1000			9 21.4	1 5	30	100 800			5	10	5	20	50 20	10					50				_				4.4	5	
2	AS	10	10	10	40	100 1000		1	1.8 15.6	5 10	40	100 800				25	5	20								5		5				1	4 18	5	
3	BH	10	10	10	40	100 1000		1	1.2 18	15	40	100 800			1	7.8	5	10	50									5					8	5	
4	DL	10	10	10	40	100 1000			6 7	15	30	100 800			10 1	0.6	5	20	50 20	10						3.75		5					6.2		
5	GU	10	10	20	40	100 1000			4.2 10	15	40	100 800			11 1	0.8 1	10	30	50 45	0					100	6.25									
6	HA	10	10	10	40	100 1000		5	10	15	40	100 800			12.2 1	5.8 1	15	20	50 40	0						1.25	0.6								
7	HP	10	10	10.4	40	130 1000			10 20	5	40	100 800			1	1.2	5	10								2.5	5	5							
8	K	10	10	10	40	130 1000		1	1.2 15	10	40	100 800				17	5	10								5	5	5				2	4 3.6	5	
9	KA	10	10	10	40	130 1000		1	8.8 20	10	30	100 800			5	15 1	10		50 20	10					50	3.75	0.6						4.4	5	
10	KE	10	10	10	40	130 1000			4.6 10	15	30	100 800			12.4	20 1	10 5	20	50 80	0						3.75							4.4	5	
11	KD	10	10	10	40	100 1000			7 15		30	100 800			7	15 1	10	20	50 20	10						5		5					6.2	5	
12	MP	10	10	20	40	130 1000		5	15	10	30	100 800			7.4 1	8.6	5 5	20	50 40	10							5	5							
13	MA	10	10	20	40	100 1000		5	20	10	30	100 800			14 1	2.4 1	15 5	30	50 40	10															
14	MU	10	15	10	40	100 1000			5 14.8	5	30	100 800			11 1	4.6 1	10	20	50 20	10					100		0.6	5					6.2		
15	NE	10	10	10	40	130 1000			14 10	10	40	100 800			1	5.8	5	20								5	5	5				1	4 3.6	5	
16	OR	10	10	20	40	100 1000		1	12 19.6	5 5	40	100 800			5	17	5	20								1.25	5	5					10.6	5	
17	PU	10	10	10	40	100 1000			10 15	5	40	100 800			5.6	15 1	10	20	50 30	10						2.5	0.6	5					4.4	5	
18	RA	10	10	20	40	130 1000			6 10	15	40	100 800			6.4	10 1	15	20	50 30	0					50			S					7.8		
19	TN	10	10	10	40	100 1000			5 20	10	30	100 800			5 1	1.4 1	15		50 30	10					50	3.75							10	5	
20	UPE	10	10	20	40	100 1000		1	1.2 16.8	8 5	40	100 800			5.6	10 1	10	20	50 25	0													8	5	
21	UPW	10	10	10	40	130 1000		5	15	10	40	100 800			11.2	15 1	10	20	50 35	0						5									
22	WB	10	10	10.6	40	100 1000		4	9.4 10	15	40	100 800			6.6	3.4	5	20	50 40	10						5		5					7.4	5	
	Total	220	225	281	880	2440 22000		20 1	156 328	215	790	2200 1760	0	-	140	51 2	00 15	390	850 538	50	-	-			400	58.8	10 17.4	1 65	-			1	3.2 97	65	

3.3 Japan

Beyond 5G whitepaper of Beyond 5G promotion consortium

The Beyond 5G promotion consortium has published <u>the Beyond 5G whitepaper</u> in March. This whitepaper contains valuable information which would promote studies on new future business and solutions for social issues over all industries not limited to communication industry. Those studies continue and the whitepaper will be also updated accordingly. Japan continues contributing to WP 5D based on this activity.

Draft report on principles of ICT strategy toward Beyond 5G

On May 6, the Information and Communications Council has published <u>the draft report</u> on principles of ICT strategy toward Beyond 5G (Japanese only). The draft report summarized potential directions on R&D, IPR and standardization activities with various trends and forecasts toward Beyond 5G. Continuously a public hearing has been conducted and a report would be finalized accordingly.

Field trials on Local 5G

In fiscal year 2021, the Ministry of Internal Affairs and Communications (MIC) conducted 26 field trials in various environments to promote use of local 5G and <u>the summary of the results</u> (Japanese only) was published in May 2022.

MIC plans to continue field trials in this fiscal year, with more focusing some technical areas such as radio propagation characteristics of local 5G, study on linear area coverage and test production of user system for various use cases.

2.3 GHz dynamic spectrum sharing

Dynamic Spectrum Sharing (DSS) with other services had been studied in Japan and the technical and deployment requirements of DSS in 2 330-2 370 MHz have been set for frequency assignment. Primary systems in this band include a programme making & special events (PMSE) service. The DSS system enables a mobile operator to operate dynamically based on the instruction judging from registered operation plans (location, time and frequency) of the primary systems.

After application and evaluation process conducted in this year, MIC decided to assign the whole band 2 330-2 370 MHz solely to KDDI corporation group, one of four major mobile operators in Japan. KDDI plans to launch its commercial service on this band in the latter half of fiscal year 2023.

4 Activities in SDO and others

4.1 **CJK** cooperation activities

The China, Japan and Korea Meeting on Information and Telecommunication Standards (CJK IT Standards Meeting) is the cooperation framework among four SDOs (ARIB, CCSA, TTA and TTC). Under the framework of the CJK IT Standards Meeting, the Working Group on IMT Standards (CJK IMT WG) undertakes collaborative activities related to IMT among ARIB, CCSA and TTA.

The 64th of CJK IMT WG was held from 12 to 13 May 2022 as a e-meeting. At the meeting, the following multi-country contributions were developed for the 41st meeting of WP 5D through the collaborative works based on each country's proposal.

- Proposal for the works in preparation for RA-23(JK) _
- Proposed Revision of RESOLUTION ITU-R 56-2(CJK) _
- Proposal to adopt option B as the overview timeline for IMT towards 2030 and beyond (CJK)
- Considerations on RESOLUTION ITU-R 65(CJK)

4.2 **TSDSI**

TSDSI has undertaken a normative work towards Broadcast Offload/Broadcast Broadband Convergence to support offload of traffic from the cellular network to the broadcast network. The overall scope of the Work Item is to identify techniques and changes needed in support of the same, which include incorporation of minimum technical changes needed to existing non-3GPP broadcast, optimum broadcast physical layer, UE for supporting converged middleware and 5GC for broadcast offload.

TSDSI has also started standardization of a new generic and flexible Relay/IAB Architecture along with the associated protocols based on the identification of limitations of existing relay architectures in LTE/5G."

C:\PROGRAM FILES (X86)\PDF TOOLS AG\3-HEIGHTS(TM) DOCUMENT CONVERTER SERVICE\TEMP\94F27F2085A35B077C0F6F33FA2A9EF69D449596F77038E1EEF62C70687164FF.DOCX (30.09.22